Introduction: CISC

CISC means Complex Instruction Set Computer chips that are easy to
program and which make efficient use of memory. Since the earliest
machines were programmed in assembly language and memory was slow
and expensive, the CISC philosophy was commonly implemented in large
computers as the PDP-11 and the DECsystem 10 and 20 machines.

Most common microprocessor designs such as the Intel 80x86 and
Motorola 68K series followed the CISC philosophy.

CISC was developed to make compiler development simpler. It shifts most
of the burden of generating machine instructions to the processor. For
example, instead of having to make a compiler write long machine
instructions to calculate a square-root, a CISC processor would have a
built-in ability to do this.

CISC Attributes

CISC instructions sets have some common characteristics:

- A2-operand format, where instructions have a source and a
destination. Register to register, register to memory, and
memory to register commands.

» Variable length instructions where the length often varies
according to the addressing mode

« Instructions which require multiple clock cycles to execute.

E.g. Pentium is considered a modern CISC processor

Most CISC hardware architectures have several characteristics in common:

« Complex instruction-decoding logic, driven by the need for a single
Instruction to support multiple addressing modes.

« Asmall number of general purpose registers. This is the direct result of
having instructions which can operate directly on memory and the limited
amount of chip space not dedicated to instruction decoding, execution, and
microcode storage.

« Several special purpose registers. Many CISC designs set special registers
for the stack pointer, interrupt handling, and so on.

« A'Condition code" register which is set as a side-effect of most
Instructions. This register reflects whether the result of the last operation is
less than, equal to, or greater than zero and records if certain error
conditions occur.

At the time of their initial development, CISC machines used available

technologies to optimize computer performance.

Microprogramniing is as easy as assembly language to implement, and
much less expensive than hardwiring a control unit.

The ease of microcoding new instructions allowed designers to make CISC
machines upwardly compatible: a new computer could run the same
programs as earlier computers because the new computer would contain a
superset of the instructions of the earlier computers.

As each instruction became more capable, fewer instructions could be used
to implement a given task. This made more efficient use of the relatively
slow main memory.

Because microprogram instruction sets can be written to match the
constructs of high-level languages, the compiler does not have to be as
complicated.

Complex Instruction Set Computer
(CISC) Characteristics

eMajor characteristics of a CISC architecture

»1) A large number of instructions - typically from 100 to 250
instruction

»2) Some instructions that perform specialized tasks and are
used infrequently

»3) A large variety of addressing modes - typically from 5 to 20
different modes

»4) Variable-length instruction formats

»5) Instructions that manipulate operands in memory (RISC in
register)

What Is RISC?

RISC?

RISC, or Reduced Instruction Set Computer. is a type of microprocessor
architecture that utilizes a small, highly-optimized set of instructions, rather than a
more specialized set of instructions often found in other types of architectures.

History
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s
and early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all
designed with a similar philosophy which has become known as RISC. Certain
design features have been characteristic of most RISC processors:

— one cycle execution time: RISC processors have a CPI (clock per instruction) of one

cycle. This is due to the optimization of each instruction on the CPU and a technique
called PIPELINING

— pipelining: a techique that allows for simultaneous execution of parts, or stages, of
Instructions to more efficiently process instructions;

— large number of registers: the RISC design philosophy generally incorporates a larger
number of registers to prevent in large amounts of interactions with memory

Reduced Instruction Set Computer (RISC)

eMajor characteristics of a RISC architecture
»1) Relatively few instructions
»2) Relatively few addressing modes
»3) Memory access limited to load and store instruction
»4) All operations done within the registers of the CPU
»5) Fixed-length, easily decoded instruction format
»6) Single-cycle instruction execution

»7) Hardwired rather than microprogrammed control

— RISC Instruction

* Only use LOAD and STORE instruction when communicating between memory and
CPU

 All other instructions are executed within the registers of the CPU without referring to
memory

Program to evaluate X =(A+B)*(C+D)

LOAD R1,A R1« M[A]
LOAD R2,B R2 « M[B]
LOAD R3,C R3<« M[C]
LOAD R4,D R4 < M[D]
ADD R1, R1, R2 Rl1<« R1+R2
ADD R3, R3, R4 R3<« R3+R4
MUL R1, R1, R3 R1<« R1*R3
STORE X, R1 M[X] <« Rl

Load instruction transfers the operand from memory to CPU Register.

«Add and Multiply operations are executed with data in the registers without
accessing the memory.

*Result is then stored in the memory with store information.

 Other characteristics of a RISC architecture
— 1) Arelatively large number of registers in the processor unit
— 2) Use of to speed-up procedure call and return
— 3) Efficient instruction pipeline
— 4) Compiler support for efficient translation of high-level language programs into
machine language programs

OVERLAPPED REGISTER WINDOWS

There are three classes of registers:

— Global Registers
« Available to all functions

— Window local registers
e Variables local to the function

— Window shared registers
« Permit data to be shared without actually needing to copy it

Only one register window is active at a time
— The active register window is indicated by a pointer

When a function is called, a new register window is activated
— This is done by incrementing the pointer

When a function calls a new function, the high numbered registers of the
calling function window are shared with the called function as the low
numbered registers in its register window

This way the caller’s high and the called function’s low registers overlap
and can be used to pass parameters and results

OVERLAPPED REGISTER WINDOWS

In addition to the overlapped register windows, the processor
has some number of registers, G, that are global registers
— This is, all functions can access the global registers.

The advantage of overlapped register windows is that the
processor does not have to push registers on a stack to save
values and to pass parameters when there is a function call

— Conversely, pop the stack on a function return

This saves
— Accesses to memory to access the stack.
— The cost of copying the register contents at all

And, since function calls and returns are so common, this
results in a significant savings relative to a stack-based
approach

R15
Common to D and A Circular Window
R0
«Total 74 reqgisters : RO L
ocalto D
- R73
R64
R63
—RO0 - R9 : Global Common to C a
registers -
Proc D R57
-R10-R63:4 Local to G
windows R48
R47
»Wi ndOW A Commonto B and C
. R42
»Window B Proc C Rt
Local to B
»Window C .
R31
»Window D Common to A and B
R26
Proc B R25
Local to A
10 Local registers i
*) Common to all Common to A and D
2 sets of 6 registers Procedures
(common to adjacent RO RI0
windows) Global Proc A

registers

« Example) Procedure A calls procedure B
— R26-R31
» Store parameters for procedure B
» Store results of procedure B
— R16 - R25 : Local to procedure A
— R32-RA41 : Local to procedure B
 Window Size=L+2C+G =10+ (2 X 6) + 10 = 32 registers
» Register File (total register) =(L+ C) XW+ G =(10+6) X 4 + 10 = 74 registers
— OJIM, G: Global registers = 10
L : Local registers = 10
C : Common registers = 6
W : Number of windows = 4

Berkeley RISC |
« RISC Architecture 2| J|& :1980 H0H =
— Berkeley RISC project : first project = Berkeley RISC |
— Stanford MIPS project
« Berkeley RISC |
— 32 bit CPU, 32 bit instruction format, 31 instruction
— 3 addressing modes : register, immediate, relative to PC

Instruction Set : Tab. 8-12

Instruction Format : Fig. 8-10 a1 2493 1918 14 13 12 5 4
Register Mode : bit 13=0 Opcode | Rd R |(0)| Notused | (52)
» S2 =register 8 5 5 1 8 5

» Example) ADD R22, R21, R23

(a) Register mode : (S2 specifies a register)
m ADD Rs,S2,Rd:Rd=Rs+S2

Register Immediate Mode : bit 13 =1 31 2423 1918 14 13 12
» S2 = sign extended 13 bit constant Opcode | Rd ks |(1) (52)
» Example) LDL (R22)#150, R5 8 5 5 1 13
= LDL (Rs)S2, Rd:Rd=M[R22] +150 (b) Register-immediate mode : (S2 specifies an operand)

PC Relative Mode
31 2423 1918

» Y =19 bit relative address
» Example) JIMPR COND, Y

Opcode | COND @

8 5 19
m JumptoPC=PC+Y

» CWP (Current Window Pointer) (c) PC relative mode :
m CALL, RET?stack pointer 2?7

RISC Architecture Originator

Architecture Ongnator Licensees
Alpha DEC Mitsubishi, Samsung
MIPS MIPS Technologies NEC, Toshiba

PA-RISC Hewlett Packard Hitachi, Samsung
PowerPC Apple, BV, Motorola Bul

Sparc Sun Fujtsu, Hyundai

1960 Intel Intel only (Embedded Controller)

CISC versus RISC

CISC

Emphasis on hardware

Includes multi-clock
complex instructions

Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

Small code sizes,
high cycles per second

Transistors used for storing
complex instructions

RISC

Emphasis on software

Single-clock,
reduced instruction only

Register to register:
"LOAD" and "STORE"
are independent instructions

Low cycles per second,
large code sizes

Spends more transistors
on memory registers

Assignment

1. Explain RISC and CISC with example.
2. Differentiate between RISC and CISC.

